

Osteosynthesis

Omega3 System 95° Supracondylar Plate

Operative Technique

Hip Fracture Systems Axially Stable Locking Option

Contents

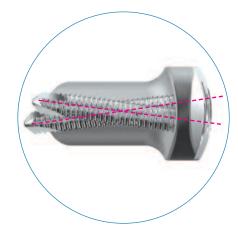
Introduction, Potential Features & Benefits	3
Relative Indications & Contraindications	5
Patient Positioning	6
Combination Reamer Assembly Instructions	7
Instrument Assembly	8
Operative Technique	
Incision, Exposure,	
and Reduction of the Fracture	9
Guide Pin Insertion	10
Guide Pin Measurement	12
Lag Screw Reaming	13
Lag Screw Insertion	14
Supracondylar Plate Attachment	16
Supracondylar Plate Fixation with	
Standard Cortical Screws	17
Supracondylar Plate Fixation with	
Axial Stable Locking Screws	19
Extraction of Locking Inserts	24
Fracture Compression	25
Closing the wound	25
Implant Removal	26
Ordering Information	
Instruments for Basic Lag Screw Set	27
Locking Instruments	29
Optional Instruments	30
Omega3 Supracondylar Plates	31
Lag Screws	31
Compression Screw	31
Cortical Screws Ø4.5mm	32
Locking Screws Ø5.0mm and Locking Insert	32
Cancellous Screws Ø6.5mm	33
Asnis™ III Screws Ø6.5mm	33

This publication sets forth detailed recommended procedures for using Stryker Trauma devices and instruments. It offers guidance that you should heed, but, as with any such technical guide, each surgeon must consider the particular needs of each patient and make appropriate adjustments when and as required. A workshop training is recommended prior to first surgery.

Note: All bone screws referenced in this material here are not approved for screw attachment or fixation to the posterior elements (pedicles) of the cervical, thoracic or lumbar spine.

Potential Features & Benefits

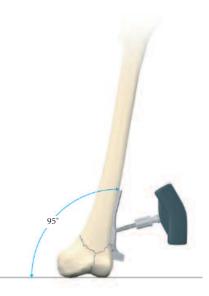
Introduction


The 95° plate angle design of the Omega3 Supracondylar Plate contours to the anatomy of the distal femur including the flare of the lateral femoral condyle. This assures more precise component fit and function with enhanced contouring to bone.

Potential Features & Benefits

 In addition to 4.5mm Cortical Screws, all sideplate holes accept
 6.5mm Cancellous Screws or Asnis III 6.5mm Cannulated Screws for additional stabilization.

 Axial Stable, 14° Diverging Locking -Monoaxial stable fixation in combination with diverging Locking Screw configuration results in increased stability.


- Super-strong, cold-forged 1.4441 stainless steel alloy provides high resistance to pitting and corrosion and excellent resistance to bending stresses.
- Supracondylar plates are available in sterile packaging for customer convenience.
- Available in five lengths: according to the number of holes:
 6, 8, 10,12 and 14 hole plates (excluding the lag screw hole).
 All lengths available in keyed and keyless barrels.
- Instrumentation and streamlined technique enhance surgical efficiency.

• Stable Fixation - On demand axial stable fixation with 5.0mm Locking Inserts and Locking Screws or standard screw fixation.

• Super-strong, cold-forged 1.4441 stainless steel alloy provides high resistance to pitting and corrosion and excellent resistance to bending stresses.

Potential Features & Benefits, continued

Lag Screw

The Omega Ø13mm Lag Screw is designed for maximum performance in a variety of applications and conditions.

The leading edge cutting thread of the standard lag screw engages quickly, with or without tapping, and provides tactile control during final positioning and seating.

The Super Lag Screw incorporates a 15mm diameter thread for use in osteoporotic bone and revision cases. The Anti-rotational design provides the security and versatility of a keyed system.

The Lag Screw is intended for use with both the Omega3 Compression Hip Plate and the 95° Supracondylar Plate.

Compression Screw

The Omega3 Compression Screw stabilizes the Lag Screw, while providing for an extra measure of compression after impaction.

Allows for up to 10mm of compression, when required.

Beveled tip provides for quick centering and thread engagement.

Relative Indications & Contraindications

Relative Indications

The Omega3 Supracondylar Plate is indicated for fractures of the distal femur which may include:

Supracondylar Fractures

The following conditions should exist:

• A distal portion of the medial condyle should be intact for the lag screw to gain adequate purchase.

The Omega3 Supracondylar Plate is also indicated for osteotomies of the proximal and the distal femur.

0

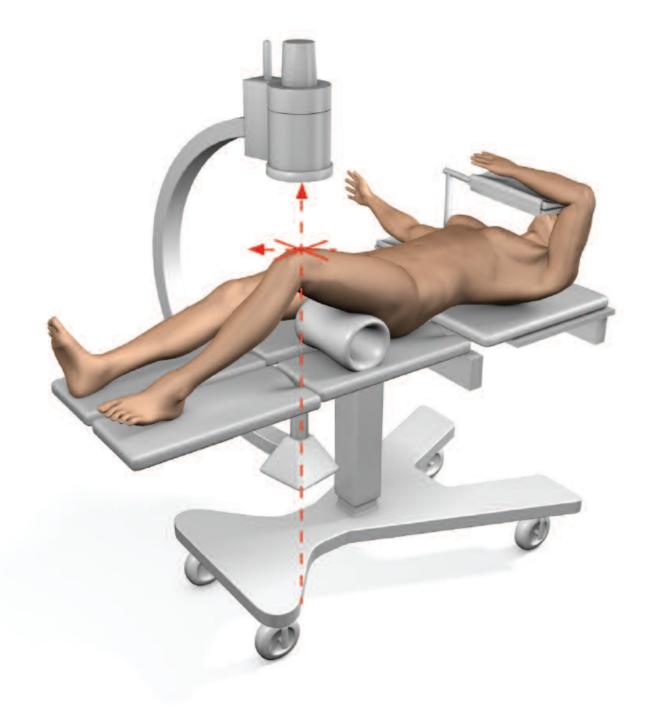
• Intercondylar Fractures

Relative Contraindications

The surgeon's education, training and professional judgement must be relied upon to choose the most appropriate device and treatment. Conditions presenting an increased risk of failure include:

- Any active or suspected latent infection or marked local inflammation in or about the affected area.
- Compromised vascularity that would inhibit adequate blood supply to the fracture or the operative site.
- Bone stock compromised by disease, infection or prior implantation that can not provide adequate support and/or fixation of the devices.
- Material sensitivity, documented or suspected.
- Significant Obesity. An obese patient can produce loads on the implant that can lead to failure of the fixation of the device or to failure of the device itself.

- Patients having inadequate tissue coverage over the operative site.
- Implant utilization that would interfere with anatomical structures or physiological performance.
- Any mental or neuromuscular disorder which would create an unacceptable risk of fixation failure or complications in postoperative care.
- Other medical or surgical conditions which would preclude the potential benefit of surgery.

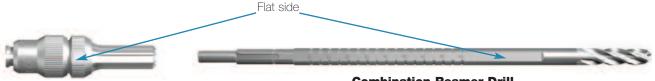

Detailed information is included in the instructions for use being attached to and shipped with every implant.

See package insert for a complete list of potential adverse effects and contraindications. The surgeon must discuss all relevant risks, including the finite lifetime of the device, with the patient, when necessary.

Caution: Bone Screws are not intended for screw attachment or fixation to the posterior elements (pedicles) of the cervical, thoracic or lumbar spine.

Patient Positioning

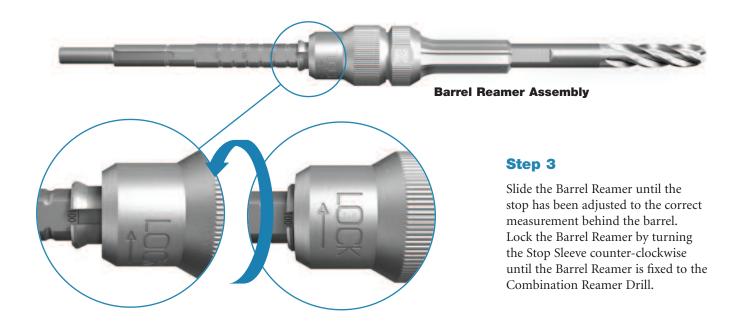
The Patient is placed in the supine position on a standard operating table with a support under the femur on which the operation is performed. Access to the distal femur with the C-arm in medial/lateral and anterior/posterior planes is verified prior to surgery.



Instrument Assembly Combination Reamer Assembly:

Step 1

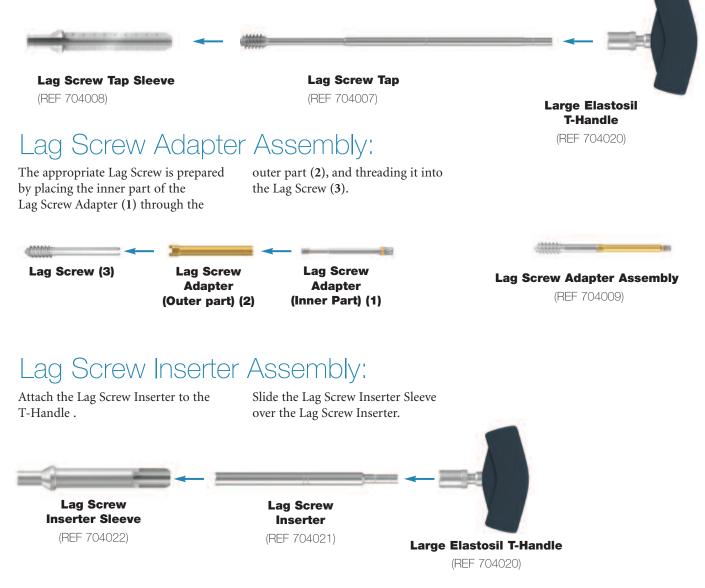
Select and assemble the Barrel Reamer. Note: Choose the corresponding Barrel Reamer, i.e. Short Barrel for the Omega3 Supracondylar Plate. The choice of Barrel length might be different when placing an Omega3 Hip Plate. In this case, please refer to the corresponding operative technique guide. When assembling, the Stop Sleeve must be threaded until a mechanical stop is felt.



Combination Reamer Drill

Step 2

Align the flat side of the Barrel Reamer to the flat side of the Combination Reamer Drill, and engage the Barrel Reamer over the coupling end of the Combination Reamer Drill.


Note: Flat sides must be aligned.

Instrument Assembly, continued Lag Screw Tap Assembly:

Push the quick coupling sleeve on the T-Handle and insert the Lag Screw Tap fitting into the coupling.

Assemble the Lag Screw Tap Sleeve to the Lag Screw Tap by aligning the flat sides of the Tap to the flat sides in the Tap Sleeve.

Lag Screw Removal Assembly:

Assemble the T-Handle to the Lag Screw Inserter as described in instruction above.

The Connecting Bolt is inserted through the Large Elastosil T-handle and threaded in to the Lag Screw.

Lag Screw

Lag Screw Inserter (REF 704021)

8

Large Elastosil T-Handle (REF 704020) Connecting Bolt (REF 704004)

Incision, Exposure & Reduction of the Fracture

Incision

Expose the fracture through an anterolateral or lateral approach in line with the greater trochanter and the lateral femoral condyle. If a lateral approach is used, care must be taken to avoid excessive use of a levering or self-retaining retractor to retract the quadriceps musculature. This type of retraction can result in excessive medial soft tissue stripping. If this approach is utilized, retraction should be achieved by "lifting" the muscle up to view lateral structures. Retraction on the medial side should be limited as much as possible. The anterolateral approach allows more controlled soft tissue dissection and retraction. The incision is started 15cm-20cm proximal to the patella and continued distally to the lateral border of the patella. The length of the incision is, of course, determined by the extent of the fracture (Fig. 1). Open the interval between the vastus lateralis and the rectus femoris to expose the vastus intermedius. Longitudinally incise the fibers of the vastus intermedius over the anterior aspect of the femur. Extend the dissection subperiosteally around the bone.

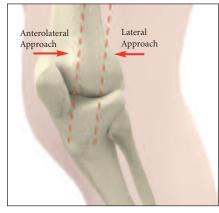


Fig. 1

Fig. 2

Fig. 3

Fracture Reduction

The fracture should be reduced by direct vision. Intra-articular fractures may be stabilized temporarily with intra-fragmentary screws or k-wires (**Fig. 2 & 3**). Inspect the supracondylar portion of the fracture for comminution and assess the possibility of requiring bone graft. Reduce the fracture and stabilize it with bone clamps.

Avoid any unnecessary medial dissection.

Technical Note: A three-part "T" fracture is reduced by conversion to a two-part fracture by stabilization with Asnis III Cannulated Screws (**Fig. 3**) and then reduced to the femoral shaft, utilizing the Supracondylar Plate and Screws. Note: Make sure that the Asnis III Cannulated Screws do not interfere with the later applied Omega3 Supracondylar Plate with Lag Screw.

Guide Pin Insertion

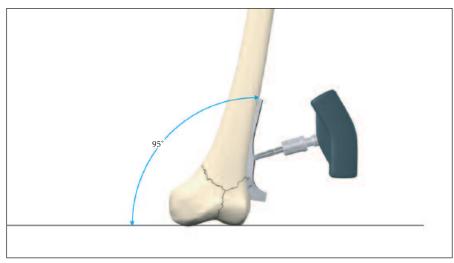
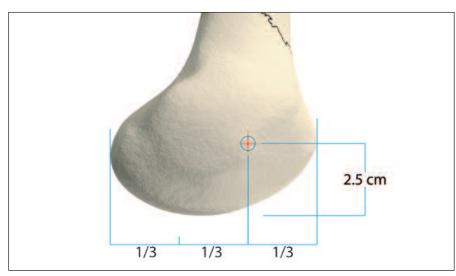
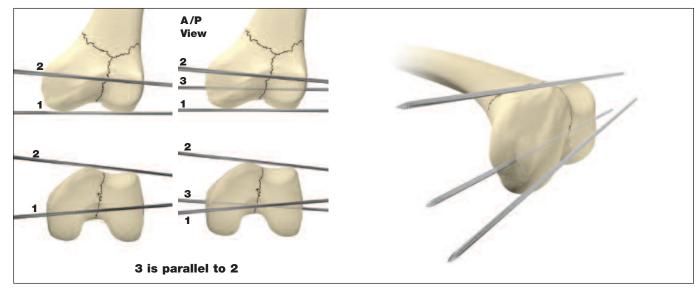



Fig. 4



After adequate reduction, the Guide Pin is inserted, utilizing the 95° Supracondylar Angle Guide placed in the "best-fit" position against the lateral cortex of the distal femur (**Fig. 4**). The Guide Pin is inserted at a point in line with the axis of the femoral shaft at the junction of the anterior one-third and middle one-third of the femoral condyle (**Fig. 5**). It is important to note that small deviations in placement may be required so that the sideplate lies flush against the lateral femoral cortex.

Given insufficient bone stock for utilization of the supracondylar pin guide, an alternative method for pin placement is required (**Fig. 6**). The knee joint axis is marked with a fine K-wire placed across the knee joint (1). A second fine k-wire is placed across the patellofemoral joint (2). A summation k-wire, parallel to the distal pin in the A/P view and the patellofemoral pin in the axial view, is placed around 2.5cm proximal to the distal femoral articulation (3).

The summation wire should be parallel to the knee joint. The other two K-wires can now be removed.

Fig. 5

Guide Pin Insertion, continued

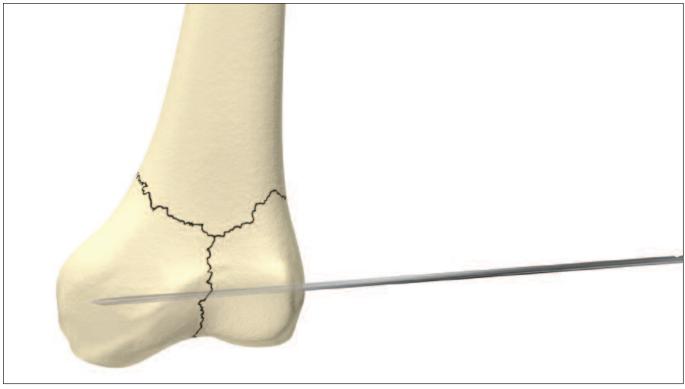


Fig. 7

Note: Placement of the Guide Pin determines the final placement of the Lag Screw. If the Guide Pin is improperly placed, a varus/valgus or rotational malalignment of the fracture fragments can result. Using image intensification, drill the Guide Pin into the condyle. The Guide Pin should be advanced until it abuts the subcortical bone of the medial femoral condyle. Because of the shape of the distal femur, the pin may not appear to cross the medial cortex when viewed under fluoroscopy (**Fig. 7**).

Guide Pin Measurement

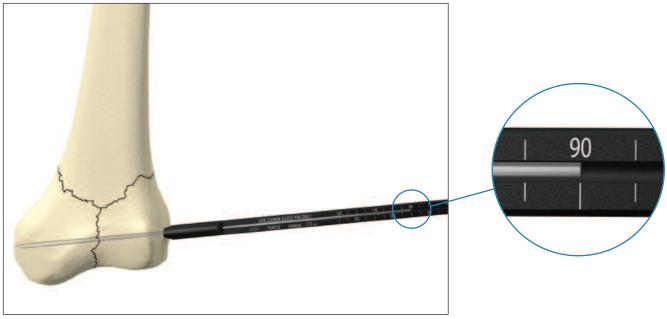


Fig. 8

Example :

- Direct reading depth gauge measurement: **90mm**
- Reamer depth Setting: 80mm
- Tapping depth (if required): 80mm
- Lag Screw Length selected: 80mm

Use the Lag Screw Depth Gauge to measure the length of the pin in the bone by sliding the Depth Gauge over the Guide Pin and pushing the gauge against the lateral cortex (ensure that there is no soft tissue between the Depth Gauge and the bone). The reading, minus 10mm, determines the settings for the Combination Reamer and Tap, and indicates the length of the Lag Screw to be used. (**Fig. 8**).

If the Depth Gauge reading is not a 5mm increment, set the remainder at the next shortest setting minus 10mm.

Lag Screw Reaming

Set and lock the short Combination Reamer to the predetermined reading (10mm less than the Guide Pin measurement).

Ream until the Combination Reamer stops itself at the lateral cortex (**Fig. 9a**).

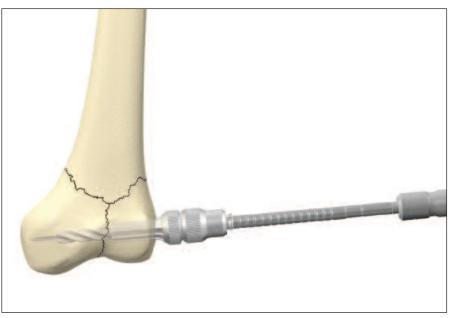
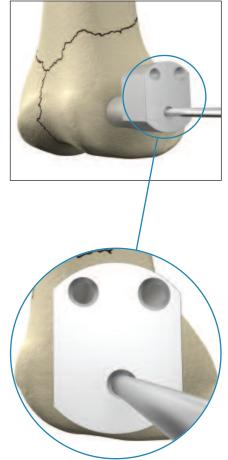


Fig. 9a

When treating supracondylar fractures, use the lag screw Combination Reamer with the short barrel only. This will ensure that the reamer for the barrel position is the same length as the barrel for the Supracondylar Plate.

The Combination Reamer is inserted over the Guide Pin, and the channel is reamed until the flared section of the barrel reamer has entered the lateral femoral cortex.

The reamer will advance no further at this point.


The reaming should be verified using fluoroscopy.

The Combination Reamer is designed to ream not only for the lag screw and short barrel of the plate, but also the flair of the barrel plate junction.

Should the guide pin inadvertently withdraw with the reamer, insert the Guide Pin Replacement Instrument in the reamed hole and reinsert the Guide Pin through the central hole (**Fig. 9b**).

Fig. 9b

Lag Screw Insertion

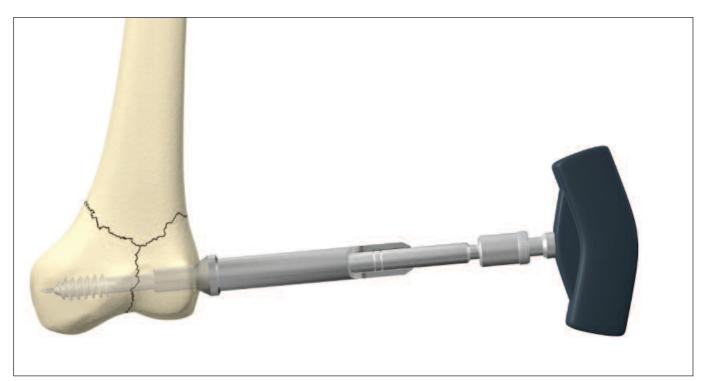
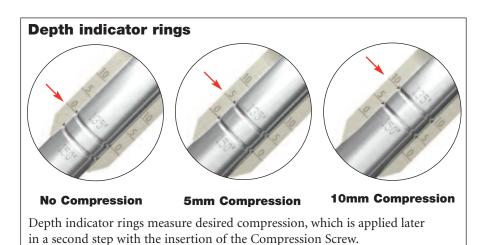



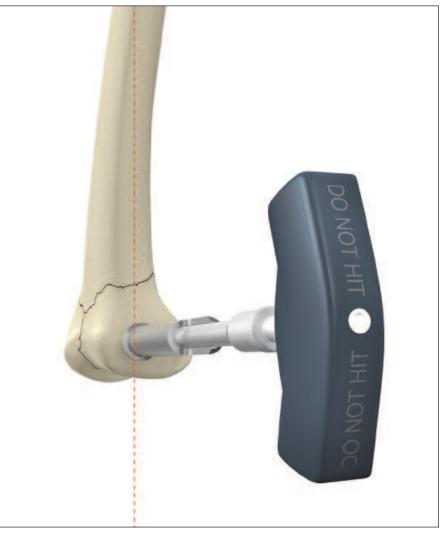
Fig. 10

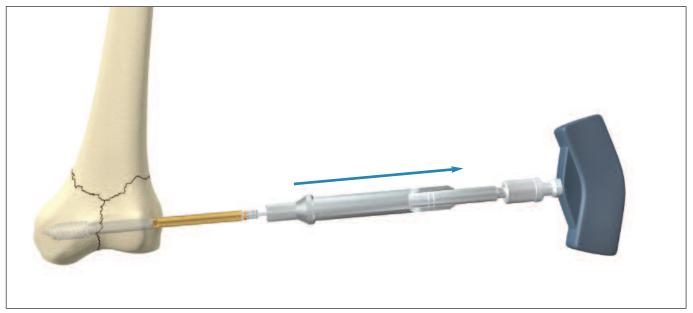
Select a Lag Screw of the appropriate length and assemble it to the Lag Screw Adapter. (For assembling instructions see Page 8).

Now place the Lag Screw Adapter Assembly into the Lag Screw Inserter, and direct it toward the bone over the Guide Pin (**Fig. 10**). (For assembling instructions see Page 8).

The Lag Screw Inserter Sleeve on the Lag Screw Inserter Assembly is advanced into the pre-reamed hole, and the Lag Screw is advanced into the prepared channel.

Depth of insertion of the Lag Screw is determined by observing the 135°-depth-indicator-ring on the inserter. The Lag Screw is inserted until the first (0mm) mark is reached. (**Fig. 11**).


This is confirmed by fluoroscopy. This gives the surgeon 10mm of available compression.



Lag Screw Insertion, continued

The Large T-Handle of the insertion wrench **is aligned with the long axis** of the femur. This positions the flats of the Lag Screw to ensure proper alignment with the Supracondylar Plate (**Fig. 12**).

Upon completion of the Lag Screw insertion, the Lag Screw Inserter Assembly is removed, leaving the Lag Screw with Lag Screw Adapter in place (**Fig. 13**).

Supracondylar Plate Attachment

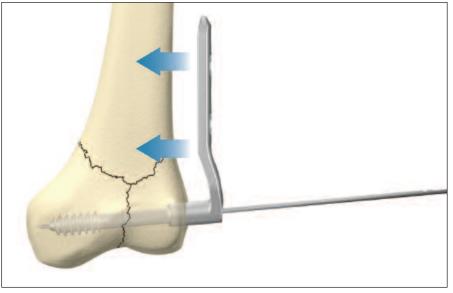


Fig. 14

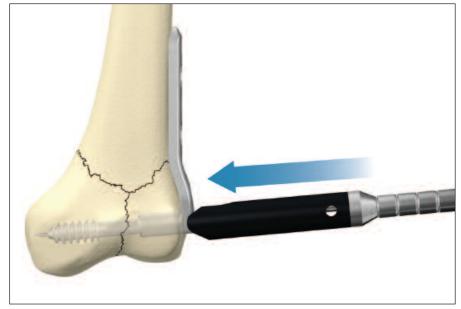


Fig. 15

The selected 6-, 8-, 10-, 12-, or 14-hole Supracondylar Plate is now placed over the Lag Screw Adapter, and advanced onto the Lag Screw (**Fig. 14**).

Note: If the Supracondylar Plate does not line up with the shaft of the femur, the Lag Screw Inserter can be placed once again over the Lag Screw Adapter and plate alignment can be fine-tuned. Alternatively, the plate can be placed over the Lag Screw; by rotating the plate, final position of the Lag Screw can be achieved.

The Plate Impactor should be used to fully seat the Supracondylar Plate (**Fig. 15**). Unscrew the Lag Screw Adapter and remove it. Then, remove the 2.8mm Guide Pin.

Note: All Guide Pins are "Single-use" products and therefore must be discarded at the end of the surgical procedure.

Supracondylar Plate Fixation with Standard Cortical Screws

Using standard screw insertion technique, fix the Omega3 Supracondylar Plate to the femoral shaft beginning at the proximal end of the plate.

This will ensure that the remaining intermediary screw holes will enter midaxially across the femur, thus gaining bicortical fixation.

Drill the bone screw holes using the 3.2mm Drill Bit through the 3.2mm Neutral Drill Sleeve with the green ring assembled to the Drill Guide Handle (**Fig. 16**).

Determine appropriate Cortical Screw length using the Depth Gauge Assembly (**Fig. 17**).

Note: If necessary, it is possible to obtain 1mm compression in the axis of the Supracondylar Plate by using the 3.2mm Compression Drill Sleeve with the yellow ring.

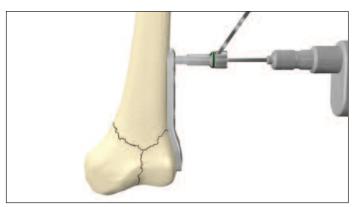
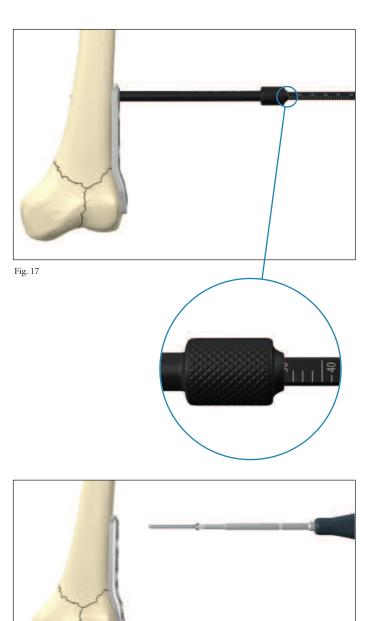



Fig. 16

Insert the 4.5mm Cortical Screws using the 3.5mm Hex Screwdriver (**Fig. 18**).

Supracondylar Plate Fixation with Standard Cortical Screws, continued

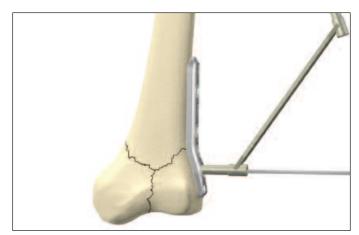


Fig. 19

Fig. 20

The two most distal holes will also accept 6.5mm cancellous screws or 6.5mm Asnis III cannulated screws for further interfragmentary compression.

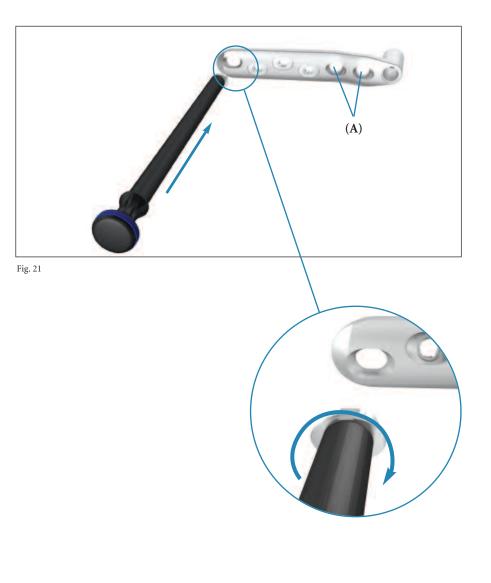
Use the Tissue Protection Sleeve/Drill Guide which accepts the 4.5mm Drill Bit for the 6.5mm cancellous screws.

If using the 6.5mm Asnis III Cannulated Screw, a 3.2mm Guide Wire is placed through the hole in the plate, and the screw is inserted over the guide wire (**Fig. 19**).

Option

A 4.5mm Tap is available, to pre-tap in hard cortical bone (**Fig. 20**).

Supracondylar Plate Fixation with Axial Stable Locking Screws


The shaft of the Supracondylar Plate is designed to accept Ø4.5mm standard Cortical Screws for neutral or compression plate attachment to the femoral bone according to standard technique described in this operative technique (page 17). Alternatively, Ø5.0mm Locking Inserts and Ø5.0mm Locking Screws may be preferred for axial stable locking in patients with poor bone quality or to perform minimal invasive surgery with a shorter plate.

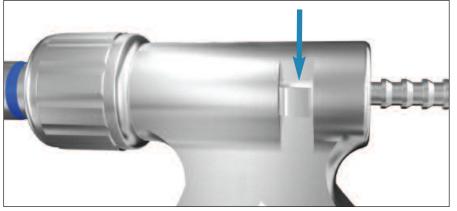
Locking Inserts and Screws may be used in conjunction with Standard Cortical Screws on the same Supracondylar plate. However, Standard Cortical Screws may not be used in the Locking Inserts. Also it is mandatory to utilize the instrumentation designed specifically for the Locking Inserts and Screws.

Step 1 Locking Insert Placement: Option 1: Placement of the Locking Insert before Implantation of the Supracondylar Plate

Before you place the Supracondylar Plate over the Lag Screw onto the bone, thread a 5.0mm Locking Insert to the Inserter Instrument and push the Locking Insert into the chosen shaft hole of the Omega3 Supracondylar Plate (**Fig. 21**).

- Note: The two first, most distal holes of the plate does not accept a Locking Insert (A). A 4.5mm Cortical, or Cancellous or a 6.5mm Asnis III Cannulated Screw always has to be used to align and press the Supracondylar Plate to the bone.
- Note: Make sure that the Locking Insert is completely pushed into the shaft hole. After correct seating of the Locking Insert in the plate, remove the Inserter by turning anti-clockwise. Repeat this procedure with each hole you want to put a Locking Insert with Locking Screws.
- Note: Do not attempt to push Locking Inserts into the plate holes with the Drill Sleeve. Only use the Locking Insert Inserter!

Supracondylar Plate Fixation with Axial Stable Locking Screws, continued

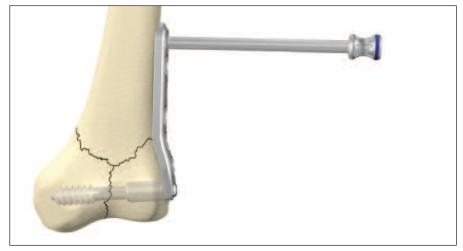

Option 2: Placement of the Locking Insert after Implantation of the Supracondylar Plate (in situ):

If desired, a Locking Insert can be applied in a compression hole in the shaft of the plate intra-operatively (in situ) by using the Locking Insert Forceps, Holding Pin and Guide for Holding Pin. When choosing this option, first implant the Supracondylar Plate according to the description on pages 16 & 17, perform a Cortical Screw insertion in the most proximal hole to advance the plate to the bone and then continue as described below with the Locking Inserts and Locking Screws.

First, the Holding Pin is inserted through the chosen hole using the Drill Sleeve for Holding Pin (**Fig. 22**). It is important to use the Guide as this centers the core hole for Locking Screw insertion after the Locking Insert is applied. After inserting the Holding Pin bi-cortically, remove the Guide.

Next, place a Locking Insert on the end of the Forceps and slide the instrument over the Holding Pin down to the hole (**Fig. 23**). Finally, apply the Locking Insert by triggering the forceps handle.

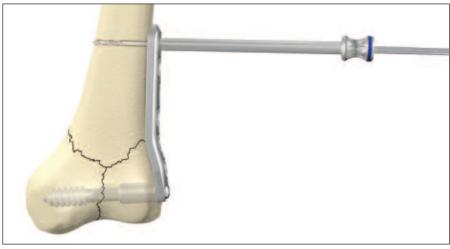
Push the button on the Forceps to remove the device (**Fig. 24**). At this time, remove the Holding Pin.



Supracondylar Plate Fixation with Axial Stable Locking Screws, continued

Step 2 Apply Drill Sleeve:

Thread the Drill Sleeve into the Locking Insert to expand its base within the plate hole, thus securing it (**Fig. 25**).


For easier alignment, first push the Drill Sleeve towards the plate and then rotate it to engage the thread.

Step 3 Drill:

Drill through both cortices of the femoral shaft using the 4.3mm Drill Bit attached to a power drill (**Fig. 26**).

Supracondylar Plate Fixation with Axial Stable Locking Screws, continued

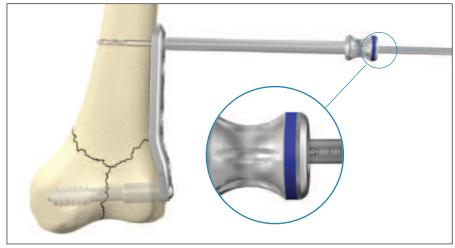


Fig. 27

Step 4 Screw Measurement:

Measure the required screw length by one of the two possibilities:

Option 1:

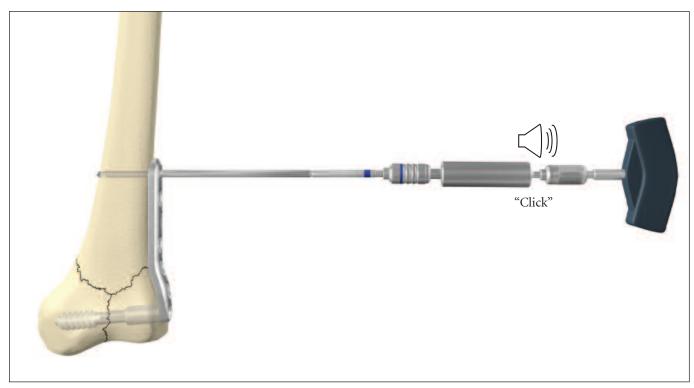
Measuring off the drill, using the calibrations marked on the drill (**Fig. 27**).

Note: Always select a screw length one size longer than measured, in order to ensure the optimal bi-cortical purchase.

Fig. 28

Option 2:

Read directly off the Direct Measuring Gauge through the Locking Insert across both cortices (**Fig. 28**).


Note: Always select a screw length one size longer than measured in order to ensure the optimal bi-cortical purchase.

Supracondylar Plate Fixation with Axial Stable Locking Screws, continued

Step 5 Screw Insertion:

Insert the Locking Screw into the Locking Insert, using the Screw Driver T20, AO fitting, the Torque Limiter and the T-Handle, medium. Alternatively the Screwdriver T20, AO fitting can be used under direct power. However, final tightening always must be done manually. The Locking Screw is adequately tightened when the Torque Limiter clicks at least once at the end of manual tightening (**Fig. 29**).

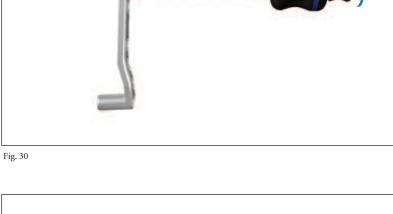
Note: The Torque Limiter is crucial to the mechanical integrity of the construct.

Extraction of Optional Locking Inserts

Should removal of a Locking Insert be required then the following procedure should be used:

Step 1

Thread the central portion (**Fig. 30**) of the Extractor into the Locking Insert until it is fully seated.


Step 2

Turn the outer collet (**Fig. 31**) clockwise until it pulls the Locking Insert out of the plate.

Step 3

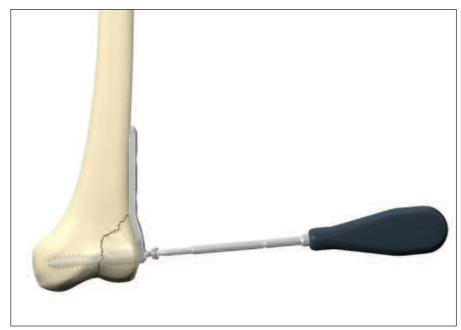
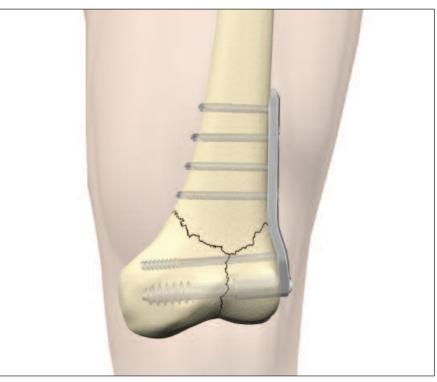
Remove the Locking Insert from the Extractor by threading it back onto the Locking Inserts Rack.

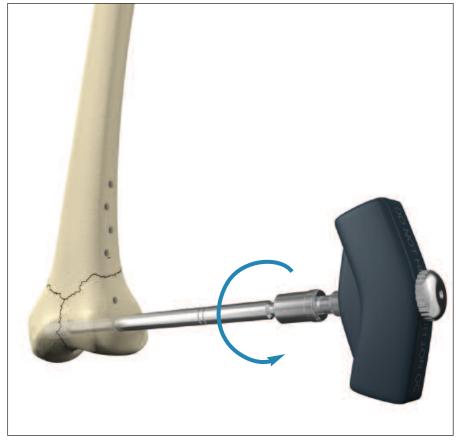
Note: Discard the Locking Insert as it cannot be reused.

Fracture Compression

The compression screw is recommended in the majority of fractures, especially supracondylar and unicondylar fractures.

The compression screw is inserted in the end of the Lag Screw through the plate barrel and gentle compression is applied to the Lag Screw and fracture using the 3.5mm Hex Screwdriver (Fig. 32). Be careful not to overcompress the fracture. Overcompressing can cause the Lag Screw to strip, especially in osteoporotic bone.


Fig. 32

Closing the wound

Upon completion of the fracture fixation, the plate is covered by the quadriceps musculature, the wound is closed in the usual fashion (**Fig. 33**).

Implant Removal

Should the need arise for hardware removal, the Lag Screw is extracted after removal of the Supracondylar plate through use of the Large Elastosil T-Handle connected to the Lag Screw Inserter and the Connecting Bolt (**Fig. 34**).

(See assembly instructions Page 8)

The Large Metal Case (REF 902100) with Lid (REF 902101) allows to store two trays, e.g. Basic Lag Screw Tray and an Optional Locking Tray or a Basic Twin Hook Tray and an Optional Locking Tray.

Basic Lag Screw Tray (REF 902120) - here shown fully equipped including the Omega3 Cortical Screw Rack (REF 902116). Alternatively an Omega3 Basic Silicone Mat (REF 902112) may be added. This allows for a even more individual set configuration: i.e. add the Variable Angle Guide, One-Step-Insertion instrumentals, etc. For this tray a Lid (REF 902121) is available as well.

REF Description

Cases and Trays

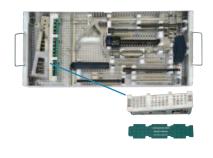
Large Metal Case *

902100	Omega3 Large Metal Case, empty
902101	Omega3 Large Metal Case Lid

Basic Lag Screw Tray

902120	Omega3 Basic Lag Screw Tray, empty
902121	Omega3 Basic Lag Screw Lid
902112	Omega3 Basic Silicone Mat
902116	Omega3 Cortical Screw Rack

Instruments for Basic Lag Screw Set **


	700358	Drill Bit Ø3.2mm x 145mm
4 <u></u> ¢	702822	Drill Guide Handle
	702840	Drill Sleeve Ø3.2mm, Neutral
	702844	Screwdriver Hex 3.5mm
	702878	Depth Gauge Assembly
887	704001	Plate Impactor Assembly
	704004	Connecting Bolt
	704005	Combination Reamer Assembly, Standard (3 pieces)
	704007	Lag Screw Tap, Large AO Fitting
	704008	Lag Screw Tap Sleeve
	704009	Lag Screw Adapter Assembly
	704010	Lag Screw Depth Gauge
	704013	Fixed Angle Guide 135°

* The Large Metal Case (REF 902100) with Lid (REF 902101) allows to store two trays, e.g. a Basic Lag Screw Tray and an Optional Locking Tray or a Basic Lag Screw Tray and an Optional Instrument Tray.

** Instruments may be stored in the Basic Lag Screw Tray (REF 902120). It is available with Lid (REF 902121), a Cortical Screw Rack (REF 902116) if non-sterile Cortical Screws are used and a Silcone Mat (REF 902112) for the auxiliary bin.

	REF I	Description
	Instruments*	* for Basic Lag Screw Set – Continued
	704020	Elastosil® T-Handle, Large AO Fitting
	704021	Lag Screw Inserter, Large AO Fitting
	704022	Inserter Sleeve
0	704026	Cleaning Stylet, Ø2.8mm
	Guide Wires	
	704011S	Guide Wire Ø2.8mm x 230mm, CoCr, Threaded Tip, Sterile
	704012S	Guide Wire, Quick Coupling, Ø2.8mm x 230mm, CoCr, Threaded Tip, Sterile

** Instruments may be stored in the Basic Lag Screw Tray (REF 902120). It is available with Lid (REF 902121), a Cortical Screw Rack (REF 902116) if non-sterile Cortical Screws are used and a Silcone Mat (REF 902112) for the auxiliary bin.

Omega3 Optional Locking Tray (REF 902130) here shown fully equipped including the Omega3 Locking Screw Rack (REF 902115) and the necessary Locking Instruments to perform axial stable fixation of the Omega3 with Locking Inserts and Locking Screws. For this tray a Lid (REF 902131) is available as well.

REF Description

Optional Locking Tray

902130	Omega3 Optional Locking Tray, empty
902131	Omega3 Optional Locking Lid
902115	Omega3 Locking Screw Rack

*** Locking instruments may be stored in the Optional Locking Instrument Tray (REF 902130). It is available with Lid (REF 902131), a Screw Rack (REF 902115) if non-sterile Locking Screws are used and a Silicone Mat (REF 902112) for the auxiliary bin.

The Omega3 Optional Instrument Tray (REF 902135) - shown here equipped with several optional instruments like the Angle Guide for Supracondylar Plate, Barrel Reamer Short, One-Step-Insertion-Instruments, etc. For this tray a Lid (REF 902136) and Silicone Mats (REF 902113) are available as well.

REF Description

Optional Instrument Tray

902135	Omega3 Optional Instrument Tray, empty
902136	Omega3 Optional Instrument Lid
902113	Omega3 Optional Instrument Silicone Mat

Optional Instruments****

	 700359	Drill Bit Ø4.5mm x 145mm
P	 702402	Tissue Protection Sleeve, Ø4.5mm / Ø6.5mm
	 702634	Large AO to Hall Coupling
_	702773	Tap Ø5.0mm x 140mm, 5.0mm Locking Set, AO Fitting
	 702808	Tap Ø4.5mm x 145mm, AO Fitting
	 702809	Tap Ø6.5mm x 145mm, AO Fitting
	 702823	Drill Sleeve Ø3.2mm, Compression
-	 702853	Screwdriver Hex 3.5mm, AO Fitting
	702863	Holding Sleeve for Screwdrivers
Ĩ	 702918	Soft Tissue Spreader, 5.0mm Locking Set

	704002	One-Step Insertion Wrench
	704003	One-Step Insertion Sleeve
	704014	Variable Angle Guide, Modular
	704019	Guide Pin Replacement Instrument
	704025	Drill Sleeve Ø3.2mm, Supracondylar
	704205	95° Angle Guide for Supracondylar Plate
	704006-20	Barrel Reamer Assembly, Short
•	704001-1	Plate Impactor Head
	900106	Screw Forceps

**** Optional instruments may be stored in the Optional Instrument Tray (REF 902135). It is available with Lid (REF 902136) and Silcone Mat (REF 902113)

Ordering Information – Implants

Omega3 Keyed Supracondylar sideplates Sterile Packaged, 25mm Barrel Length

-	

Stainless Steel Ref	Fixed Angle	Slots	Length mm
597306S	95°	6	111
597308S	95°	8	143
597310S	95°	10	175
597312S	95°	12	207
597314S	95°	14	239

Omega Standard Lag Screw, 22mm Thread Length, 13mm Thread Diameter

dunt.	Stainless Steel REF	Length mm
	3362-5-050	50
	3362-5-055	55
	3362-5-060	60
	3362-5-065	65
	3362-5-070	70
	3362-5-075	75
	3362-5-080	80
	3362-5-085	85
	3362-5-090	90
	3362-5-095	95
	3362-5-100	100
	3362-5-105	105
	3362-5-110	110
	3362-5-115	115
	3362-5-120	120
	3362-5-125	125
	3362-5-130	130

Omega3 Keyless Supracondylar sideplates Sterile Packaged, 25mm Barrel Length

Stainless Steel Ref	Fixed Angle	Slots	Length mm	
597326S	95°	6	111	
597328S	95°	8	143	
597330S	95°	10	175	
597332S	95°	12	207	
597334S	95°	14	239	

Omega Super Lag Screw, 22mm Thread Length, 15mm Thread Diameter

Stainless Steel REF	Length mm
3362-8-050	50
3362-8-055	55
3362-8-060	60
3362-8-065	65
3362-8-070	70
3362-8-075	75
3362-8-080	80
3362-8-085	85
3362-8-090	90
3362-8-095	95
3362-8-100	100
3362-8-105	105
3362-8-110	110
3362-8-115	115
3362-8-120	120
3362-8-125	125
3362-8-130	130

Omega Compression Screw

Stainless SteelLengthREFmm596001S32.3

Ordering Information – Implants

Cortical Screws ø4.5mm, Self Tapping, Hex 3.5mm

Locking Screws ø5.0mm, Self Tapping, T20 Drive

Length

mm

 Stainless Steel REF	Length mm	Stainless Steel REF
340614	14	370314
340616	16	370316
340618	18	370318
340620	20	370320
340622	22	370322
340624	24	370324
340626	26	370326
340628	28	370328
340630	30	370330
340632	32	370332
340634	34	370334
340636	36	370336
340638	38	370338
340640	40	370340
340642	42	370342
340644	44	370344
340646	46	370346
340648	48	370348
340650	50	370350
340652	52	370355
340654	54	370360
340655	55	370365
340656	56	370370
340658	58	370375
340660	60	370380
340662	62	370385
340664	64	370390
340665	65	370395
340666	66	
340668	68	
340670	70	Screw lengths 30–60mm fit into
340672	72	Locking Screw Rack (REF 902115)
340674	74	
340675	75	
340676	76	
340678	78	
340680	80	
340685	85	
340690	90	
340695	95	
340700	100	
340705	105	
340710	110	

Screw lengths 30–60mm fit into Cortical Screw Rack (REF 902116)

5.0mm Locking Insert

Stainless Steel	Diameter	
REF	mm	
370003	14x8.5	
370003	14x8.	

Locking Inserts fit into Locking Screw Rack (REF 902115)

Ordering Information – Implants

Cancellous Screws ø6.5mm - 16mm thread

 Stainless Steel REF	Length mm
341030	30
341035	35
341040	40
341045	45
341050	50
341055	55
341060	60
341065	65
341070	70
341075	75
341080	80
341085	85
341090	90
341095	95
341100	100
341105	105
341110	110
341115	115
341120	120
341125	125
341130	130

Asnis III Cannulated Screws ø6.5mm, Thread Length 20mm

 Stainless Steel REF	Length mm
326040S	40
326045S	45
326050S	50
326055S	55
326060S	60
326065S	65
3260705	70
3260755	75
326080S	80
326085S	85
326090S	90
326095S	95
326100S	100
326105S	105
3261105	110
3261155	115
3261205	120

Cancellous Screws ø6.5mm - 32mm thread

 Stainless Steel REF	Length mm
342045	45
342050	50
342055	55
342060	60
342065	65
342070	70
342075	75
342080	80
342085	85
342090	90
342095	95
342100	100
342105	105
342110	110
342115	115
342120	120
342125	125
342130	130

Asnis III Cannulated Screws ø6.5mm, Thread Length 40mm

 Stainless Steel REF	Length mm
3262558	55
326260S	60
3262658	65
3262705	70
3262758	75
3262805	80
3262855	85
3262905	90
3262958	95
326300S	100
3263058	105
3263105	110
326315S	115
3263205	120

Cancellous Screws ø6.5mm – Fully threaded

Cancellous Screws ø6.5mm – Fully threaded		nreaded	Asnis III Cannulated	Screws ø6.5mm, Full	y Threaded
	Stainless Steel REF	Length mm		Stainless Steel REF	Length mm
	343020	20		326430S	30
	343025	25		3264358	35
	343030	30		3264408	40
	343035	35		3264458	45
	343040	40		3264508	50
	343045	45		3264558	55
	343050	50		3264608	60
	343055	55		3264658	65
	343060	60		3264708	70
	343065	65		3264758	75
	343070	70		326480S	80
	343075	75		3264858	85
	343080	80		3264908	90
	343085	85		3264958	95
	343090	90		3265008	100
	343095	95		3265058	105
	343100	100		3265108	110
	343105	105		3265158	115
	343110	110		3265208	120
	343115	115		3265258	125
	343120	120		3265308	130
	343125	125			
	343130	130			

Note: For Sterile, add 'S' to REF of Cancellous Screws; Asnis III Cannulated Screws are available Sterile only.

Notes

Notes

Joint Replacements

Trauma, Extremities & Deformities

Craniomaxillofacial

Spir

Biologics

Surgical Products

Neuro & ENT

Interventional Pain

Navigation

Endoscopy

Communications

Imaging

Patient Handling Equipment

EMS Equipment

Stryker Trauma AG Bohnackerweg 1 CH-2545 Selzach Switzerland

www.osteosynthesis.stryker.com

The information presented in this brochure is intended to demonstrate a Stryker product. Always refer to the package insert, product label and/or user instructions before using any Stryker product. Surgeons must always rely on their own clinical judgment when deciding which products and techniques to use with their patients. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

Stryker Corporation or its subsidiary owns the registered trademark: Stryker Stryker Corporation or its subsidiary owns, uses or has applied for the following trademarks: Omega, Asnis. Swemac Orthopaedics AB owns the following trademark: Hansson. Wacker-Chemie CmbH owns the following trademark: Elastosil

Literature Number: 982311

Copyright © 2007 Strykei