TRIGEN° INTERTAN° Intertrochanteric Antegrade Nail
Surgical Technique

As described by:
Professor Dr. med. J.M. Rueger
Thomas A. Russell, MD
Roy W. Sanders, MD
Paul Tornetta, MD

Table of Contents

Features ... 4
INTERTAN System Case Examples ... 4
Design Features .. 6
Nail Specifications .. 7
Indications .. 9

Surgical Technique .. 11
Patient Positioning .. 11
Incision ... 12
Entry Point ... 13
Fracture Reduction ... 15
Nail Length Measurement ... 17
Preparation of the Medullary Canal ... 18
Target Device Assembly .. 19
Nail Insertion ... 20
Anteversion Alignment ... 21
AP Alignment ... 22
Guide Pin Insertion ... 24
Lag Screw Measurement ... 26
Single Lag Screw Insertion ... 27
Integrated Interlocking Lag Screw Insertion 28
Distal Locking ... 34
Nail Cap Insertion ... 36
Nail Extraction ... 36
Catalogue Information .. 41

Nota Bene
The technique description herein is made available to the healthcare professional to illustrate the author's suggested treatment for the uncomplicated procedure. In the final analysis, the preferred treatment is that which addresses the needs of the specific patient.
INTERTAN® Nails - Designed for Stability

The TRIGEN® INTERTAN nail was designed as a trochanteric portal intramedullary nail especially shaped for fractures of the proximal femur. The INTERTAN system offers anatomically shaped trapezoidal implants as opposed to conventional circular shaped intramedullary nails.

The INTERTAN system offers an integrated interlocking screw option to increase stability and resistance to intra-operative and post-operative femoral head rotation, thus eliminating excessive sliding and the possibility of Z-effect. The INTERTAN screw is a 4th generation intramedullary nail combining the rotational stability of the original RUSSELL-TAYLOR® Reconstruction Nail with the enhanced sliding and compression of the IMHS® Intramedullary Hip Screw. The INTERTAN system screw utilizes the best of both concepts.

The option of a single lag screw device placed in the femoral head is available for rotationally stable proximal femur fractures.

Devices in the proximal femur are at their greatest stress levels when the hip is placed through its flexion extension arc (ex: chair rise and climbing stairs). During this event, the trapezoidal shape of the INTERTAN system enhances stability of the implant within the femur. In addition, the integrated interlocking screw configuration imparts rotational stability in the femoral head and neck segment, and offers a greater resistance to cutout. With these features, the INTERTAN system provides an innovative treatment option for proximal femur fractures.
This next generation nail in the TRIGEN® system provides these clear advantages:

Implants
- Additional strength and stability with a unique integrated interlocking screw and trapezoidal nail shape
- Improved resistance to femoral head rotation and cutout
- Active compression achieved through a linear motion without rotation
- Single subtrochanteric lag screw option for stable fractures below the lesser trochanter
- Preloaded cannulated set screw converts the construct to a fixed angle device
- The small proximal diameter of the nail promotes preservation of the lateral wall of the greater trochanter and gluteus medius tendon
- Clothespin tip for stress modulation in the femoral shaft
- Potential for improved patient mobility and recovery

Instrumentation
- Familiar, easy to use, minimally invasive TRIGEN instrumentation
- Anti-rotation bar maintains stability during drilling and screw insertion
- Alignment guides for proper lag screw placement in the femoral neck and head
INTERTAN® System Case Examples

With Thanks to Dr. med. Andreas Ruecker University Hospital Hamburg - Eppendorf

Case 1

Preoperative AP

Preoperative Lateral

Postoperative AP

Postoperative Lateral

12 Month AP

12 Month Lateral
Case 2

Preoperative AP

Postoperative AP Postoperative Lateral
Two-screw integrated interlocking provides:

- Improved resistance to femoral head rotation and cutout
- Active compression achieved through a linear motion without rotation

Design Features

- 4° Lateral offset for trochanteric insertion
- Preloaded cannulated set screw converts construct to a fixed angle device or allows for post operative sliding
- Trapazoidal nail shape provides additional strength and stability in the proximal femur during flexion extension similar to hip stem prosthesis
- Small proximal diameter of the nail promotes preservation of the lateral wall of the greater trochanter and gluteus medius tendon
- Distal slot for static or 5mm of dynamization and rotational stability
- Clothespin tip for stress modulation in the femoral shaft which reduces stiffness that can cause thigh pain and periprosthetic fracture
- Optional distal diameters for optimal fit in femoral canal
Implant Specifications

Minor diameter tapers from 11-5.6mm

Integrated interlocking screws (sold together) 70-125mm

NOTE: These views are not to scale and should be used as a pictorial representation only.
Implant Specifications continued

NOTE: These views are not to scale and should be used as a pictorial representation only.

Minor diameter tapers from 11-5.6mm

Subtrochanteric lag screw
70-125mm
Indications

INTERTAN™ nails are indicated for simple long bone fractures; severely comminuted, spiral, long oblique and segmental fractures; nonunions and malunions; polytrauma and multiple fractures; prophylactic nailing of impending pathologic fractures; reconstruction following tumor resection and grafting; bone lengthening and shortening; subtrochanteric fractures; ipsilateral femoral shaft/neck fractures; intertrochanteric fractures; and intracapsular fractures.
Use the Smith & Nephew Preoperative INTERTAN® nail templates to determine the appropriate neck angle, nail length, nail diameter and proper screw length. All INTERTAN nail templates are available with 117% magnification to compensate for radiographic magnification. Please keep in mind that variations in magnification do occur.

When selecting the appropriate nail size take all aspects of the fracture into consideration.

TRIGEN® INTERTAN® Nail X-ray Template Set
Cat. No. 7167-4200
Patient Positioning

Place the patient in the supine position on a fracture or radiolucent table with the unaffected limb extended below the affected limb and trunk. Flex the affected hip 15°-40°. Apply traction through a skeletal traction pin or with the fracture table foot holder. Adjust the affected limb for length and rotation by comparison with the unaffected limb. Check rotation by rotating the C-arm in line with the femoral neck anteversion and then make the appropriate correction. This is best checked by visualizing the femoral anteversion proximally and matching it with the correct rotation of the knee.

The lateral decubitus position may be selected in certain fracture configurations at the surgeon's discretion.

For short nails only (not recommended for long nail procedures), flex the hip and knee of the unaffected extremity and place it in a leg holder. Abduction and internal rotation of the hip allows unimpeded fluoroscopic imaging.
Incision

Palpate the trochanter. Make a 3cm incision approximately 2-3cm proximal to the greater trochanter. Carry the incision through the fascia. Do not damage the gluteal muscles by excessive manipulation.
Assemble the entry portal tube to the entry portal handle and insert the honeycomb. The tube assembly is oriented so that the superior side of the bevel is medial or lateral as desired. Advance the assembly until it rests against the lateral aspect of the greater trochanter.

TRIGEN® Tip: Attaching suction to the entry portal handle provides an unobstructed view of the entry site, assists in blood evacuation, and minimizes aerosolization of blood to the operative team.

Attach the 3.2mm guide pin to the mini-connector. The entry point for the guide pin is in line with the medullary canal in the ML view and 4° from centre in the AP view. Insert the guide pin through the honeycomb and advance 2-3cm into the cortex at the tip of the greater trochanter. Once proper placement of the guide pin is achieved, remove the honeycomb.

TRIGEN Tip: A two guide pin technique may be used. The first pin is inserted through one of the off-centre holes in the honeycomb just lateral to the tip of the greater trochanter. The honeycomb is then rotated to access the definitive site of precise portal placement. The second guide pin can then be easily and accurately placed in the definitive site.

Entry Portal Tube
Cat. No. 7167-4060

Entry Portal Handle
Cat. No. 7167-4092

3.2mm Guide Pin
Cat. No. 7167-4029

Honeycomb
Cat. No. 7167-4075

Mini-Connector
Cat. No. 7163-1186

AO Mini-Connector
Cat. No. 7175-1153
Opening the Proximal Femur

Insert the 12.5mm entry reamer until it "clicks" into the 16mm channel reamer. Attach the channel reamer assembly to power for reaming of the proximal section of the femur. Introduce the assembly over the 3.2mm guide pin through the entry portal tube and advance 1-2cm into bone. The reamer assembly is then manipulated under image until the shaft axis and intended path of the reamer form an angle of approximately 4° in the AP view and is in line with the centre of the femoral canal in the ML view. Caution should be taken not to over estimate the angle, as too much of a lateral insertion angle may make advancement of the nail more difficult. Once the correct orientation is obtained, the reamer assembly is advanced to full depth seated against the entry portal tube. Remove the 12.5mm entry reamer and guide pin, keeping the entry portal tube and channel reamer in place.

TRIGEN® Tip: View the channel reamer as a three step process:

1. Capture the guide wire with 1st 10mm of channel reamer insertion.
2. The next 20mm of the channel reamer aligns for varus, valgus, flexion, and extension alignment.
3. Controls trajectory of reamer path from proximal metaphysis into the medullary canal.

Note: Use caution not to insert the guide pin in so deeply, that a false trajectory is made in the proximal femur introducing a malalignment at the fracture.

Note: If the entry portal tube is not used, ensure that the channel reamer has reached the level of the lesser trochanter.

12.5mm Entry Reamer

Cat. No. 7163-1116

16mm Channel Reamer

Cat. No. 7167-4062
Assemble the modular reducer and attach the T-handle. Introduce the assembly through the channel reamer and entry portal tube. Use the reducer to manipulate the proximal fragment and reduce the fracture. Insert the reducer to the level of the distal epiphyseal scar once the distal fragment has been captured.

TRIGEN® Tip: If the fracture is severely displaced, use the curved tip of the reducer to direct the 3.0mm x 1000mm ball tip guide rod into the distal fragment of the femur. Under fluoroscopy, stop the reducer as it approaches the fracture site. Pass the guide rod through the reducer until the tip of the guide rod can be visualized at the end of the curved reducer. Rotate the reducer and direct the guide rod to capture the distal fragment then advance the reducer into the distal fragment. The gripper is useful in holding onto the guide rod during insertion, proper placement, and removal.

Reducer
Cat. No. 7167-4077

T-handle
Cat. No. 7167-4076

3.0mm x 1000mm Ball Tip Guide Rod
Cat. No. 7163-1626

Gripper
Cat. No. 7167-4080
Guide Rod Placement

Insert the 3.0mm ball-tipped guide rod through the reducer and into the distal femur. The guide rod should be placed centre-centre in the shaft of the femur in the AP and ML views stopping in the region of the distal epiphyseal scar. This minimizes the chance of eccentric anterior placement of the nail in osteopenic femurs.

Reducer
Cat. No. 7167-4077
3.0mm x 1000mm
Ball Tip Guide Rod
Cat. No. 7163-1626
If a long nail has been chosen, it will be necessary to measure for nail length. Confirm the distal tip of the 3.0mm x 1000mm ball tip guide rod is located at the desired position in the distal femur. Slide the ruler over the proximal end of the guide rod. Advance the open end of the ruler through the channel reamer and entry portal tube. The tip of the ruler should be at the level of the greater trochanter. Read the nail length from the calibrations exposed at the other end of the ruler.
Preparation of Medullary Canal

Canal preparation is dependent upon surgical preference. If diaphyseal reaming is planned, use progressive reamers over the guide rod through the channel reamer and entry portal tube. Sequentially ream in 0.5mm increments to approximately 1mm larger than the chosen nail diameter. The obturator may be used to ensure the guide rod stays in position during reaming. Periodically move the reamer back and forth in the femoral canal to clear debris from the cutting flutes of the reamer.

TRIGEN™ Tip: The obturator is used during sequential reaming to maintain the position of the guide rod in the canal. The holes in the black obturator head can be used to hold the exposed end of the guide rod as reamer removal begins. The obturator shaft can then be inserted into the cannulation of the reamer to continue holding the guide rod position.

Note: The channel reamer will not accommodate reamer heads larger than 12.5mm.

Obturator
Cat. No. 7167-4078
Select the appropriate radiolucent drill guide drop based upon the neck angle chosen and attach the drop to the drill guide handle. Confirm the pre-loaded cannulated set screw does not obstruct the lag screw hole in the nail. Insert the 7/16 guide bolt into the drill guide handle and attach the nail using the guide bolt wrench with T-handle. Ensure that the guide bolt is properly seated and threaded into the nail. Any nail incorrectly attached will not accurately target. Verify targeting accuracy by inserting the lag screw drill sleeve into the drill guide and confirm the 11mm lag screw drill passes easily through the nail. Once the correct nail assembly has been verified remove the drill sleeve and attach the Impactor onto the drill guide to insert the nail.
Nail Insertion

Verify proper fracture reduction. Advance the nail over the guide rod with the drill guide in the lateral position and carefully seat in the proximal femur. Final nail position is achieved with a gentle impaction force applied by the hammer after confirmation of proper anteversion and AP alignment.

Select the appropriate radiolucent drill guide drop based upon the neck angle chosen and attach the drop to the drill guide handle.

TRIGEN® Tip: For long nails, orient the nail and guide 90º anteriorly. Advance the nail over the guide rod until the nail taper is reached and then rotate the guide to the lateral position.

Drill Guide Handle
Cat. No. 7167-4001
Anteversion Alignment

Anteversion alignment is achieved using the radio-opaque embedded wire in the drill guide handle. Position the C-Arm for an anteverted lateral image. Rotate the drill guide until both the nail and wire are centered within the femoral head. This may also require adjustment of the C-Arm.

Drill Guide Handle
Cat. No. 7167-4001
Rotate the C-Arm to the AP position. Attach the alignment tower to the drill guide and insert the alignment arm. Verify the markings on the alignment arm match the operative side. Use the C-Arm to position the drill guide so the alignment arm and the center of the lag screw hole in the nail are in line with the femoral head. The alignment arm facilitates visualization of the central axis of the lag screw. Centre-centre alignment applies to both the single subtrochanteric lag screw and the 11.0mm lag screw of the integrated interlocking screws.
Final Seating of the Nail

Remove the guide rod prior to the last 2cm of final seating. Confirm the nail is in the desired position and exert a gentle impaction force with the hammer to fully seat the nail.

Note: The trapezoidal cross section of the nail helps control rotation during insertion similar to the press fit of uncemented hip stem techniques.

Note: If excessive impaction force was necessary, check to make sure the guide bolt is still tight and the set screw has not migrated into the lag screw hole.

If the nail fails to advance sufficiently, use biplanar imaging of the nail tip and the fracture zone to identify the source of impingement. Additional reaming may be required, especially in the proximal metaphyseal diaphyseal junction. In young strong bone, a narrow proximal metaphyseal to diaphyseal transition may require sequential flexible canal reaming over the guide wire to facilitate nail insertion.

Note: Since the channel reamer must be removed for reaming over 12.5mm, exercise caution not to ream out the lateral cortex in the proximal femur.
Guide Pin Insertion

Insert the adjustable lag screw drill sleeve and the 4.0mm drill sleeve trocar into the drill guide. Firmly press the trocar tip into the skin. Use this mark to make a small incision down to bone. Advance the drill sleeve and drill sleeve trocar through the incision. Verify the lag screw sleeve locks into the drill guide.

Note: Both sleeves should rest gently against bone. If the drill sleeves are pushed aggressively in position the drill guide may deflect.

Note: The lag screw drill sleeve is adjustable. The "0" setting will accommodate most patients.

Confirm the desired anteversion with the C-Arm in the lateral position.

Lag Screw
Drill Sleeve
Cat. No. 7167-4023

4.0mm Sleeve
Trocar
Cat. No. 7167-4072
Make sure that the trocar sleeve is gently resting against bone and insert the 4.0mm long AO pilot drill. Open the lateral cortex under power. Remove the drill bit and **replace the trocar sleeve with the lag screw 3.2mm guide pin sleeve**. Advance the 3.2mm guide pin through the guide pin sleeve while maintaining the correct anteversion. Final positioning of the guide pin should be done with the C-Arm in the AP plane. Insert the guide pin until the tip reaches the optimal tip-to-apex distance (TAD). Reconfirm the final placement of the pin in both planes.

TRIGEN® Tip: Utilize the 4.0mm drill sleeve trocar to optimize drill position in the lateral cortex and help prevent cephalad malposition of the guide pin.

Note: Do not use the trocar sleeve to read guide pin markings. The 3.2mm guide pin sleeve must be seated within lag screw drill sleeve.

4.0mm Long AO Pilot Drill
Cat. No. 7164-1121

3.2mm Guide Pin
Cat. No. 7167-4029

Lag Screw 3.2mm Guide Pin Sleeve
Cat. No. 7167-4032
Read the calibrations off the guide pin for lag screw measurement. Alternatively, lag screw measurement may be obtained by inserting the lag screw length gauge over the guide pin until it sits flush with the end of the lag screw 3.2mm guide pin sleeve. Confirm the guide pin sleeve is seated flush within the lag screw drill sleeve for an accurate measurement. Lag screw measurement is determined by lining up the end of the guide pin with the calibrations on the length gauge.

Note: The lag screw measurement is independent of the proximity of the drill sleeve to the lateral cortex of the femur.

At this point in the procedure it is necessary to determine if a single lag screw or an integrated interlocking lag screw will be chosen. Once you commit to a single lag screw technique you cannot use the integrated interlocking screw technique.

The single lag screw steps are tabbed in **Blue**.

The integrated interlocking screw steps are tabbed in **Green**.
Single Lag Screw Insertion

Single Lag Screw Drilling

Confirm that the guide pin tip is 5mm from subcondular bone for adequate screw depth. Drill over the guide pin under image using the 11.0mm lag screw drill. Confirm the guide pin is not being forced forward. Drill until the lag screw drill reaches the measured guide pin depth. This will be indicated by the markings on the shaft of the lag screw drill. Care should be taken to ensure that orientation of the drill guide handle is not altered. Markings on the lag screw drill reference the face of the drill sleeve.

TRIGEN Tip: Use the obturator to maintain the position of the guide pin during lag screw drill removal.

Lag Screw Selection

If compression is **not** needed then select a lag screw length equal to the measurement taken from the drilling depth. For example, if the drilling depth was 100mm then select a 100mm lag screw.

If compression is **is** needed then select a lag screw length equal to the measurement taken from the guide pin minus the desired amount of compression. For example, if the drilling depth was 100mm and up to 5mm of compression is needed, then select a 95mm lag screw. By selecting a 90mm lag screw a maximum of 10mm of compression can be achieved.

Note: It is not recommended to exceed 10mm of compression.

11mm Lag Screw Drill
Cat. No. 7167-4008

Subtroch Lag screwdriver
Cat. No. 7167-4068

T-handle
Cat. No. 7167-4076
Single Lag Screw Insertion

Lag Screw Insertion
Without Compression

Attach the selected INTERTAN™ Subtrochanteric Lag Screw to the subtroch lag screwdriver. Thread the compressing dial onto the end of the driver until the “0” mark is visible. Attach the T-handle and insert the driver assembly into the lag screw drill sleeve. Advance the driver by rotating it clockwise until the dial is flush against the drill sleeve. At final seating, the T-handle must be positioned perpendicular or parallel to the drill guide to properly orient the lag screw.

INTERTAN Lag Screw Insertion
With Compression

Attach the selected subtrochanteric lag screw to the subtroch lag screwdriver.

Option #1: 5mm of Compression
If the lag screw selected is 5mm less than what was drilled for, thread the compressing dial onto the end of the driver until the “5” mark is visible.

Option #2: 10mm of Compression
If the lag screw selected is 10mm less than what was drilled for, thread the compressing dial onto the end of the driver until the “10” mark is visible.

Attach the T-handle and insert the driver assembly into the lag screw drill sleeve. Advance the driver by rotating it clockwise until the compressing dial is flush against the drill sleeve. At final seating, the T-handle must be positioned perpendicular or parallel to the drill guide to properly orient the lag screw.

T-handle
Cat. No. 7167-4076

Subtroch Lag Screwdriver
Cat. No. 7167-4068

Compressing Dial
Cat. No. 7167-4069
Compression is achieved by rotating the compressing dial clockwise until desired compression is achieved or the "0" mark on the subtroch lag driver is visible.

Note: The red marking on the driver signifies that the compression limit has been reached.

Locking Set Screw

To *prevent* sliding, tighten the set screw firmly using the set screwdriver and T-handle assembly. To *permit* sliding, reverse the set screw ¼ turn counterclockwise once the set screw is tightened. Screw design prevents medial screw migration into the femoral head.

Confirm the set screw is engaged in a migration limiting slot on the lag screw by gently turning the T-handle. If turning the T-handle is limited, then the set screw is properly engaged.

Single Lag Screw Insertion

![T-handle](image)

- **T-handle**
 - Cat. No. 7167-4076

![Subtroch Lag Screwdriver](image)

- **Subtroch Lag Screwdriver**
 - Cat. No. 7167-4068

![Compressing Dial](image)

- **Compressing Dial**
 - Cat. No. 7167-4069
Integrated Interlocking Lag Screw Insertion

Compression Screw Preparation

Attach the 7.0mm compression screw starter drill to power and perforate the lateral cortex beneath the lag screw 3.2mm guide pin sleeve to prepare the bone for the head of the compression screw. Advance the drill until the built in positive stop abuts the guide pin sleeve. Remove the starter drill.

Note: It is imperative to abut the starter drill prior to drilling for the compression screw. The starter drill prepares the lateral cortex for the compression screw head which is larger than its shaft. Failure to complete this step may cause inefficient compression and/or cephalad malposition.

Attach the 7.0mm compression screw drill to power and insert it into the same hole as the starter drill. Advance the drill under fluoroscopy to a depth 5mm less than the guide pin depth. The markings on the compression screw are read from the face of the lag screw drill sleeve.

Remove the compression screw drill and replace it with the anti-rotation bar. The anti-rotation bar should be introduced using hand force only. If the starter drill has not been sufficiently used, the lateral cortex may deflect the anti-rotation bar. If deflection occurs, reuse the starter drill to clear away the bone at the nail interface to facilitate anti-rotation bar insertion.

Note: The anti-rotation bar provides stability of the head and neck segment during lag screw drilling.

INTERTAN™ Lag Screw Drilling

Drill over the guide pin using the 11.0mm lag screw drill. Confirm under image the guide pin is not being forced forward beyond the desired depth. Markings on the lag screw drill reference the face of the drill sleeve and confirm guide pin depth. Care should be taken to ensure orientation of the drill guide handle is not altered.

TRIGEN™ Tip: Use the obturator to maintain the position of the guide pin during drilling.

7.0mm Compression Screw Starter Drill
Cat. No. 7167-4070
7.0mm Compression Screw Drill
Cat. No. 7167-4034
Anti-Rotation Bar
Cat. No. 7167-4073
INTERTAN® Lag Screw Selection

If compression is not needed then select the lag screw length that is equal to the measurement taken from the drilling depth. For example, if the drilling depth was 100mm, then select a 100mm Lag Screw.

If compression is needed then select the lag screw length that is equal to the measurement taken from the drilling depth minus the desired amount of compression. For example, if the drilling depth was 100mm and up to 5mm of compression is needed, then select a 95mm lag screw. By selecting a 90mm lag screw, a maximum of 10mm of compression can be achieved. The INTERTAN lag screw will be packaged with the 7.0mm compression screw. The compression screw is 5mm shorter than the lag screw.

Note: It is not recommended to exceed 10mm of compression.

INTERTAN Lag Screw Insertion Without Compression

Attach the selected INTERTAN lag screw to the lag screwdriver. Insert the driver assembly into the lag screw drill sleeve. Gently advance the driver through the drilled hole.

Rotate the driver, inserting the screw until the “0” mark on the driver is in line with the face of the lag screw drill sleeve. At final seating, the T-handle of the lag screwdriver must be perpendicular to the drill guide to allow for the removal of the anti-rotation bar.

Remove the anti-rotation bar. Next attach the compression screw to the compression screw hexdriver. Once the compression screw is properly secured, attach the T-handle to the hexdriver. Advance the compression screw by rotating the T-handle clockwise until the blue line on the driver shaft is aligned with the face of the lag screw drill sleeve.

Lag Screwdriver Cat. No. 7167-4067
Compression Screw Hexdriver Cat. No. 7167-4035
T-handle Cat. No. 7167-4076
Integrated Interlocking Lag Screw Insertion continued

TRIGEN Tip: Even if no compression was planned 2-3mm of compression can be achieved by rotating the compression screw T-handle until the red line on the lag screwdriver becomes visible. Do not compress past the red line.

TRIGEN Tip: If additional compression is needed then remove the compression screw hexdriver and assemble the compressing dial onto the lag screwdriver. Thread the compressing dial until it abuts the lag screw drill sleeve. Gently rotate the compressing dial clockwise under image until desired compression is achieved. A maximum of 5mm of compression may be achieved.

INTERTAN Lag Screw Insertion With Compression

Attach the selected INTERTAN lag screw to the lag screwdriver. Insert the driver assembly into the lag screw drill sleeve. Gently advance the driver through the drilled hole.

Note: Release any traction on the fracture to allow compression.

Option #1: 5mm of Compression

Rotate the driver, inserting the screw until the “5” mark on the driver is in line with the face of the lag screw drill sleeve. At final seating, the T-handle of the lag screwdriver must be perpendicular to the drill guide to allow for the removal of the anti-rotation bar.

Option #2: 10mm of Compression

Rotate the driver, inserting the screw until the “10” mark on the driver is in line with the face of the lag screw drill sleeve. At final seating, the T-handle of the lag screwdriver must be perpendicular to the drill guide to allow for the removal of the anti-rotation bar.

Anti-Rotation Bar
Cat. No. 7167-4073

Lag Screwdriver
Cat. No. 7167-4067
Remove the anti-rotation bar. Next attach the compression screw to the compression screw hexdriver. Once the compression screw is properly secured, attach the T-handle to the hexdriver. Advance the compression screw by rotating the T-handle clockwise until the blue line on the driver shaft is aligned with the face of the lag screw drill sleeve. At this point the compression screw is seated within the nail and compression can begin.

Continue to rotate the T-handle to linearly compress the fracture. Rotating the T-handle will cause the gear mechanism of the integrated interlocking screws to migrate the lag screwdriver back as compression occurs. When the blue line below the “0” mark on the lag screwdriver becomes visible, it is recommended to stop compression.

TRIGEN® Tip: An additional 2-3mm of compression can be achieved by rotating the compression screw T-handle until the red line on the lag screwdriver becomes visible. Once the red line becomes visible, the compression limit has been reached.

Locking Set Screw

To prevent sliding, tighten the preassembled set screw firmly using the set screwdriver and T-handle assembly.

Note: The integrated interlocking lag screw is incapable of superior migration.

Note: The INTERTAN® subtrochanteric lag screw is incapable of superior migration only if the set screw is engaged.
Distal Locking Short Nails

Insert the 4.0mm drill sleeve into the 9.0mm drill sleeve and place this assembly through the drill guide. Make a stab incision and seat the drill sleeve assembly to bone. Drill through both cortices using the 4.0mm long AO pilot drill. The screw length can be determined using the drill bit calibrations measured against the 4.0mm drill sleeve or the screw depth gauge. Attach the appropriate length internal captured 5.0mm screw to the medium hexdriver. Attach the T-handle to the hexdriver and insert the screw. Targeted static (proximal) and dynamic (distal) locking options are available.

TRIGEN Tip: Use the screwdriver release handle through the T-handle to release the hexdriver from the screw.
Distal locking in the long nail will require a free hand technique. Use the screw length sleeve, 4.0mm short AO pilot drill and the short hexdriver for this technique. Once “perfect circles” are established, make a stab incision. The short pilot drill is used under power to drill through the locking holes in the nail. The screw length can be determined using the drill bit calibrations measured against the 4.0mm drill sleeve or the screw depth gauge. Attach the appropriate length screw to the short hexdriver, connect the T-handle and insert the screw until it is fully seated.

Screw Length Sleeve
Cat. No. 7167-4085

4.0mm Short AO Pilot Drill
Cat. No. 7164-1123
Nail Cap Insertion

It is recommended to use a nail cap to close the proximal end of the nail if osseous ingrowth is a concern. Attach the nail cap to the medium hexdriver and then attach the T-handle. Insert the assembly into the incision near the greater trochanter and insert the end cap rotating the T-handle clockwise.

Note: The nail cap should be fully seated and flush within the nail at final seating.
Nail Extraction Technique

Through a small incision, remove any distal locking screws using the short hex driver. Make an incision over the proximal end of the nail. Under fluoroscopy, place a 3.2mm guide pin into the driving end of the nail. A mallet may be used to insert the guide pin, but usually power equipment is available and can be used for percutaneous placement.

When the guide pin is in the nail, make a one inch incision about the guide pin and advance the 12.5mm entry reamer over the pin to remove the osseous ingrowth overlying the nail. Note that the tip of the reamer is straight for approximately one-half inch before flaring out. It is this portion of the reamer that enters the nail.

After reaming, remove the reamer and the guide pin and insert the 3.0mm ball tip guide rod. Attach the extractor to the impactor and tighten, then thread the extractor into the nail (with the guide rod in place). Place the guide bolt wrench shaft into the impactor slot and turn clockwise until the impactor is securely engaged into the nail.

After the impactor is securely engaged in the nail, remove the remaining lag screw.

Single Lag Screw Removal

Make a small incision at the lateral aspect of the INTERTAN™ subtrochanteric lag screw and remove any osseous ingrowth that may have formed into the screw. Attach the lag screwdriver to the lag screw. Confirm the lag screwdriver is fully seated and the lag screw is captured. Remove the screw rotating the T-handle counterclockwise.

12.5mm Entry Reamer
Cat. No. 7163-1116

3.2mm Guide Pin
Cat. No. 7167-4029

IMHS™ CP Nail Extractor
Cat. No. 7168-7111
Integrated Interlocking
Lag Screw Removal

Make a small incision at the lateral aspect of the integrated interlocking lag screw and remove any osseous ingrowth that may have formed into the screws. Attach the long INTERTAN® hexdriver to the inferior compression screw. Confirm the hexdriver is fully seated and remove the screw rotating the T-handle counterclockwise. Once the compression screw has been removed attach the lag screwdriver to the superior lag screw and remove the screw rotating the T-handle counterclockwise.

Confirm that all locking screws have been removed and remove the nail. Gently backslap the impactor with the slotted hammer if needed.

Use extreme caution not to exert any side loads on the impactor extractor assembly. Excessive pulling and pushing on the end of the impactor handle could result in premature failure of the extractor device. In the event of extractor failure, re-tighten the gripper adjacent to the impactor and proceed with the extraction.

Recommended usage for the extractor: 7-10 times then replace.
An Alternative Method for Extraction

Jamming the Guide Rods

Utilizing two guide rods, one 3.0mm ball tip and one 2.0mm smooth guide rod, advance the ball tip guide rod past the end of the nail then insert the smooth guide rod in a similar manner, past the tip of the nail. Once both rods are in place, attach the gripper to the end of the ball tipped guide rod and pull back to wedge the ball tip with the smooth guide rod and the end of the nail. Backslap against the gripper to remove the nail.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-5120</td>
<td>2.0mm x 700mm smooth</td>
</tr>
<tr>
<td>7163-1626</td>
<td>3.0mm x 1000mm ball tip</td>
</tr>
<tr>
<td>7111-8280</td>
<td>2.0mm x 900mm smooth</td>
</tr>
<tr>
<td>7111-8202</td>
<td>3.0mm x 900mm ball tip</td>
</tr>
<tr>
<td>11-2069</td>
<td>3.0mm x 900mm ball tip</td>
</tr>
</tbody>
</table>

Note: Other items that may be helpful in removal are as follows:

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>115074</td>
<td>Large Extractor Hook</td>
</tr>
<tr>
<td>115073</td>
<td>Small Extractor Hook</td>
</tr>
<tr>
<td>914659</td>
<td>Small Easy Out</td>
</tr>
<tr>
<td>914658</td>
<td>Large Easy Out</td>
</tr>
</tbody>
</table>
Catalogue Information – Screws

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1210</td>
<td>TRIGEN® 5.0mm Internal Captured 25mm-50mm Screw Set</td>
<td></td>
</tr>
<tr>
<td>7164-2225</td>
<td>Internal Hex Captured Screw 5.0mm x 25mm</td>
<td>1</td>
</tr>
<tr>
<td>7164-2230</td>
<td>Internal Hex Captured Screw 5.0mm x 30mm</td>
<td>3</td>
</tr>
<tr>
<td>7164-2235</td>
<td>Internal Hex Captured Screw 5.0mm x 35mm</td>
<td>2</td>
</tr>
<tr>
<td>7164-2240</td>
<td>Internal Hex Captured Screw 5.0mm x 40mm</td>
<td>1</td>
</tr>
<tr>
<td>7164-2245</td>
<td>Internal Hex Captured Screw 5.0mm x 45mm</td>
<td>1</td>
</tr>
<tr>
<td>7162-2250</td>
<td>Internal Hex Captured Screw 5.0mm x 50mm</td>
<td>1</td>
</tr>
</tbody>
</table>

7167-6032	INTERTAN® Lag/Compression Screw Kit Set	
7167-2030	INTERTAN Compression Screw 30mm	1
7167-7080	INTERTAN Lag/Comp Screw Kit 80mm x 75mm	1
7167-7085	INTERTAN Lag/Comp Screw Kit 85mm x 80mm	2
7167-7090	INTERTAN Lag/Comp Screw Kit 90mm x 85mm	2
7167-7095	INTERTAN Lag/Comp Screw Kit 95mm x 90mm	2
7167-7100	INTERTAN Lag/Comp Screw Kit 100mm x 95mm	2
7167-7105	INTERTAN Lag/Comp Screw Kit 105mm x 100mm	1
7167-7110	INTERTAN Lag/Comp Screw Kit 110mm x 105mm	1
7167-7115	INTERTAN Lag/Comp Screw Kit 115mm x 110mm	1

7167-2000	INTERTAN Subtrochanteric Lag Screw Set	
7167-8005	INTERTAN Subtrochanteric Lag Screw 105mm	1
7167-8010	INTERTAN Subtrochanteric Lag Screw 100mm	1
7167-8011	INTERTAN Subtrochanteric Lag Screw 110mm	1
7167-8015	INTERTAN Subtrochanteric Lag Screw 115mm	1
7167-8080	INTERTAN Subtrochanteric Lag Screw 80mm	1
7167-8085	INTERTAN Subtrochanteric Lag Screw 85mm	2
7167-8090	INTERTAN Subtrochanteric Lag Screw 90mm	3
7167-8095	INTERTAN Subtrochanteric Lag Screw 95mm	3
Catalogue Information – Nails

Short

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1250</td>
<td>INTERTAN° 125° 10mm & 11.5mm x 18cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5201</td>
<td>INTERTAN 10mm x 18cm 125°</td>
<td>1</td>
</tr>
<tr>
<td>7167-5202</td>
<td>INTERTAN 11.5mm x 18cm 125°</td>
<td>1</td>
</tr>
<tr>
<td>7167-1350</td>
<td>INTERTAN 130° 10mm & 11.5mm x 18cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5207</td>
<td>INTERTAN 10mm x 18cm 130°</td>
<td>1</td>
</tr>
<tr>
<td>7167-5208</td>
<td>INTERTAN 11.5mm x 18cm 130°</td>
<td>1</td>
</tr>
</tbody>
</table>

Long

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1251</td>
<td>INTERTAN 125° 10mm x 34-40cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5221</td>
<td>INTERTAN 10mm x 34cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5222</td>
<td>INTERTAN 10mm x 34cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5223</td>
<td>INTERTAN 10mm x 36cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5224</td>
<td>INTERTAN 10mm x 36cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5225</td>
<td>INTERTAN 10mm x 38cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5226</td>
<td>INTERTAN 10mm x 38cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5227</td>
<td>INTERTAN 10mm x 40cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5228</td>
<td>INTERTAN 10mm x 40cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-1351</td>
<td>INTERTAN 130° 10mm x 34-40cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5265</td>
<td>INTERTAN 10mm x 34cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5266</td>
<td>INTERTAN 10mm x 34cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5267</td>
<td>INTERTAN 10mm x 36cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5268</td>
<td>INTERTAN 10mm x 36cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5269</td>
<td>INTERTAN 10mm x 38cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5270</td>
<td>INTERTAN 10mm x 38cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5271</td>
<td>INTERTAN 10mm x 40cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5272</td>
<td>INTERTAN 10mm x 40cm 130° Right Rose</td>
<td>1</td>
</tr>
</tbody>
</table>
Long continued

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1252</td>
<td>INTERTAN® 125° 11.5mm x 34-40cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5243</td>
<td>INTERTAN 11.5mm x 34cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5244</td>
<td>INTERTAN 11.5mm x 34cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5245</td>
<td>INTERTAN 11.5mm x 36cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5246</td>
<td>INTERTAN 11.5mm x 36cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5247</td>
<td>INTERTAN 11.5mm x 38cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5248</td>
<td>INTERTAN 11.5mm x 38cm 125° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5249</td>
<td>INTERTAN 11.5mm x 40cm 125° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5250</td>
<td>INTERTAN 11.5mm x 40cm 125° Right Rose</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1352</td>
<td>INTERTAN 130° 11.5mm x 34-40cm Set</td>
<td></td>
</tr>
<tr>
<td>7167-5287</td>
<td>INTERTAN 11.5mm x 34cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5288</td>
<td>INTERTAN 11.5mm x 34cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5289</td>
<td>INTERTAN 11.5mm x 36cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5290</td>
<td>INTERTAN 11.5mm x 36cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5291</td>
<td>INTERTAN 11.5mm x 38cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5292</td>
<td>INTERTAN 11.5mm x 38cm 130° Right Rose</td>
<td>1</td>
</tr>
<tr>
<td>7167-5293</td>
<td>INTERTAN 11.5mm x 40cm 130° Left Lime</td>
<td>1</td>
</tr>
<tr>
<td>7167-5294</td>
<td>INTERTAN 11.5mm x 40cm 130° Right Rose</td>
<td>1</td>
</tr>
</tbody>
</table>

Disposables

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1200</td>
<td>INTERTAN® Disposable Set</td>
<td></td>
</tr>
<tr>
<td>7163-1121</td>
<td>4.0mm Long AO Pilot Drill (4.0mm x 333mm)</td>
<td>2</td>
</tr>
<tr>
<td>7163-1123</td>
<td>4.0mm Short AO Pilot Drill (4.0mm x 161mm)</td>
<td>2</td>
</tr>
<tr>
<td>7163-1626</td>
<td>3.0mm x 1000mm Ball Tip Guide Rod</td>
<td>2</td>
</tr>
<tr>
<td>7167-4029</td>
<td>3.2mm Guide Pin (3.2mm x 343mm)</td>
<td>3</td>
</tr>
</tbody>
</table>
INTERTAN® System

INTERTAN Instrument Set
Cat. No. 7167-5011

Tray Outer Case (1)
Cat. No. 652-4110

Lid for Tray (2)
Cat. No. 652-4111

4.7mm Medium Hexdriver
Cat. No. 7163-1066

12.5mm Entry Reamer
Cat. No. 7167-1116

Guide Bolt Wrench
Cat. No. 7163-1140

9mm Drill Sleeve
Cat. No. 7163-1152

Screw Depth Gauge
Cat. No. 7163-1189

Set Screwdriver
Cat. No. 7166-5014

Drill Guide Handle
Cat. No. 7167-4001

130° Radiolucent Drill Guide Drop
Cat. No. 7167-4003
(135° Special Order)
11mm Lag Screw Drill
Cat. No. 7167-4008

Alignment Tower
Cat. No. 7167-4018

Low Profile Drill Sleeve
Cat. No. 7167-4023

Lag screw guide pin sleev
Cat. No. 7167-4032

Compression Screw Drill
Cat. No. 7167-4034

Compression Screw Driver
Cat. No. 7167-4035

Screw Length Gauge/Multi-T
Cat. No. 7167-4058

Entry Portal Tube
Cat. No. 7167-4060

16mm Channel Reamer
Cat. No. 7167-4062

Alignment Arm
Cat. No. 7167-4066

Lag Screw Driver
Cat. No. 7167-4067

Comp Screw Starter Drill
Cat. No. 7167-4070
7/16 Guide Bolt
Cat. No. 7167-4071

4.0mm Drill Sleeve Trocar
Cat. No. 7167-4072

Anti-Rotation Bar
Cat. No. 7167-4073

Honeycomb
Cat. No. 7167-4075

T-handle
Cat. No. 7167-4076

Reducer
Cat. No. 7167-4077

Obturator
Cat. No. 7167-4078

Ruler
Cat. No. 7167-4079

Gripper
Cat. No. 7167-4080

Impactor
Cat. No. 7167-4081

4.0mm Drill Sleeve
Cat. No. 7167-4083

Screwdriver Release Handle
Cat. No. 7167-4084

Entry Portal Handle
Cat. No. 7167-4092

AO Mini Connector
Cat. No. 7175-1153
INTERTAN Instrument Set
Cat. No. 7167-5012

125° Radiolucent Drill Guide Drop
Cat. No. 7167-4002

Lag Screw Tap
Cat. No. 7167-4009

Subtroch Lag Screwdriver
Cat. No. 7167-4068

Compressing Dial
Cat. No. 7167-4069

Catalogue Information – Optional Instruments
INTERTAN® System

Multipurpose Driver
Cat. No. 7163-1161

Cannulated Awl
Cat. No. 7167-4000

T-handle Trocar
Cat. No. 7167-4074

Slotted Hammer
Cat. No. 7167-4082

Screw Length Sleeve
Cat. No. 7167-4085

4.7mm Short Hexdriver
Cat. No. 7163-1068

17mm Channel Reamer
Cat. No. 7167-4063

IMHS® CP Nail Extractor
Cat. No. 7168-7111
Catalogue Information – Replacement Parts

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-4086</td>
<td>Subtroc Lag Screw Hexdriver Rod</td>
<td>1</td>
</tr>
<tr>
<td>7167-4087</td>
<td>Lag Wrench Retaining Rod Assembly</td>
<td>1</td>
</tr>
<tr>
<td>7167-4088</td>
<td>Compression Screw Hexdriver Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7163-1169</td>
<td>Short Hexdriver Screw Retaining Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7163-1167</td>
<td>Medium Hexdriver Screw Retaining Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7163-1165</td>
<td>Long Hexdriver Screw Retaining Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7163-1165</td>
<td>Multipurpose Driver Retaining Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7167-4090</td>
<td>Tissue Protector Locking Collar</td>
<td>1</td>
</tr>
</tbody>
</table>

TRIGEN® Reamer Set (optional)

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7167-1212</td>
<td>TRIGEN Reamer Set</td>
<td></td>
</tr>
<tr>
<td>7111-8200</td>
<td>Sculptor Flexible Reamer</td>
<td>1</td>
</tr>
<tr>
<td>7111-8232</td>
<td>9.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8233</td>
<td>9.5mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8234</td>
<td>10.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8235</td>
<td>10.5mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8236</td>
<td>11.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8237</td>
<td>11.5mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8238</td>
<td>12.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8239</td>
<td>12.5mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8240</td>
<td>13.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8241</td>
<td>13.5mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7111-8242</td>
<td>14.0mm Reamer Head</td>
<td>1</td>
</tr>
<tr>
<td>7163-1130</td>
<td>Flexible Reamer Extender</td>
<td>1</td>
</tr>
</tbody>
</table>